Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
PLoS One ; 16(9): e0256630, 2021.
Article in English | MEDLINE | ID: covidwho-1518353

ABSTRACT

Pneumonia is a respiratory infection caused by bacteria or viruses; it affects many individuals, especially in developing and underdeveloped nations, where high levels of pollution, unhygienic living conditions, and overcrowding are relatively common, together with inadequate medical infrastructure. Pneumonia causes pleural effusion, a condition in which fluids fill the lung, causing respiratory difficulty. Early diagnosis of pneumonia is crucial to ensure curative treatment and increase survival rates. Chest X-ray imaging is the most frequently used method for diagnosing pneumonia. However, the examination of chest X-rays is a challenging task and is prone to subjective variability. In this study, we developed a computer-aided diagnosis system for automatic pneumonia detection using chest X-ray images. We employed deep transfer learning to handle the scarcity of available data and designed an ensemble of three convolutional neural network models: GoogLeNet, ResNet-18, and DenseNet-121. A weighted average ensemble technique was adopted, wherein the weights assigned to the base learners were determined using a novel approach. The scores of four standard evaluation metrics, precision, recall, f1-score, and the area under the curve, are fused to form the weight vector, which in studies in the literature was frequently set experimentally, a method that is prone to error. The proposed approach was evaluated on two publicly available pneumonia X-ray datasets, provided by Kermany et al. and the Radiological Society of North America (RSNA), respectively, using a five-fold cross-validation scheme. The proposed method achieved accuracy rates of 98.81% and 86.85% and sensitivity rates of 98.80% and 87.02% on the Kermany and RSNA datasets, respectively. The results were superior to those of state-of-the-art methods and our method performed better than the widely used ensemble techniques. Statistical analyses on the datasets using McNemar's and ANOVA tests showed the robustness of the approach. The codes for the proposed work are available at https://github.com/Rohit-Kundu/Ensemble-Pneumonia-Detection.


Subject(s)
COVID-19/diagnosis , Early Diagnosis , Pneumonia/diagnosis , Thorax/diagnostic imaging , COVID-19/diagnostic imaging , COVID-19/virology , Deep Learning , Humans , Lung/diagnostic imaging , Lung/pathology , Neural Networks, Computer , North America , Pneumonia/diagnostic imaging , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Thorax/pathology , X-Rays
2.
Comput Biol Med ; 138: 104895, 2021 11.
Article in English | MEDLINE | ID: covidwho-1446548

ABSTRACT

The COVID-19 pandemic has collapsed the public healthcare systems, along with severely damaging the economy of the world. The SARS-CoV-2 virus also known as the coronavirus, led to community spread, causing the death of more than a million people worldwide. The primary reason for the uncontrolled spread of the virus is the lack of provision for population-wise screening. The apparatus for RT-PCR based COVID-19 detection is scarce and the testing process takes 6-9 h. The test is also not satisfactorily sensitive (71% sensitive only). Hence, Computer-Aided Detection techniques based on deep learning methods can be used in such a scenario using other modalities like chest CT-scan images for more accurate and sensitive screening. In this paper, we propose a method that uses a Sugeno fuzzy integral ensemble of four pre-trained deep learning models, namely, VGG-11, GoogLeNet, SqueezeNet v1.1 and Wide ResNet-50-2, for classification of chest CT-scan images into COVID and Non-COVID categories. The proposed framework has been tested on a publicly available dataset for evaluation and it achieves 98.93% accuracy and 98.93% sensitivity on the same. The model outperforms state-of-the-art methods on the same dataset and proves to be a reliable COVID-19 detector. The relevant source codes for the proposed approach can be found at: https://github.com/Rohit-Kundu/Fuzzy-Integral-Covid-Detection.


Subject(s)
COVID-19 , Deep Learning , Humans , Lung , Pandemics , SARS-CoV-2 , Tomography, X-Ray Computed
3.
Multimed Tools Appl ; 81(1): 31-50, 2022.
Article in English | MEDLINE | ID: covidwho-1384535

ABSTRACT

The COVID-19 virus has caused a worldwide pandemic, affecting numerous individuals and accounting for more than a million deaths. The countries of the world had to declare complete lockdown when the coronavirus led to community spread. Although the real-time Polymerase Chain Reaction (RT-PCR) test is the gold-standard test for COVID-19 screening, it is not satisfactorily accurate and sensitive. On the other hand, Computer Tomography (CT) scan images are much more sensitive and can be suitable for COVID-19 detection. To this end, in this paper, we develop a fully automated method for fast COVID-19 screening by using chest CT-scan images employing Deep Learning techniques. For this supervised image classification problem, a bootstrap aggregating or Bagging ensemble of three transfer learning models, namely, Inception v3, ResNet34 and DenseNet201, has been used to boost the performance of the individual models. The proposed framework, called ET-NET, has been evaluated on a publicly available dataset, achieving 97.81±0.53% accuracy, 97.77±0.58% precision, 97.81±0.52% sensitivity and 97.77±0.57% specificity on 5-fold cross-validation outperforming the state-of-the-art method on the same dataset by 1.56%. The relevant codes for the proposed approach are accessible in: https://github.com/Rohit-Kundu/ET-NET_Covid-Detection.

4.
Sci Rep ; 11(1): 14133, 2021 07 08.
Article in English | MEDLINE | ID: covidwho-1303790

ABSTRACT

COVID-19 has crippled the world's healthcare systems, setting back the economy and taking the lives of several people. Although potential vaccines are being tested and supplied around the world, it will take a long time to reach every human being, more so with new variants of the virus emerging, enforcing a lockdown-like situation on parts of the world. Thus, there is a dire need for early and accurate detection of COVID-19 to prevent the spread of the disease, even more. The current gold-standard RT-PCR test is only 71% sensitive and is a laborious test to perform, leading to the incapability of conducting the population-wide screening. To this end, in this paper, we propose an automated COVID-19 detection system that uses CT-scan images of the lungs for classifying the same into COVID and Non-COVID cases. The proposed method applies an ensemble strategy that generates fuzzy ranks of the base classification models using the Gompertz function and fuses the decision scores of the base models adaptively to make the final predictions on the test cases. Three transfer learning-based convolutional neural network models are used, namely VGG-11, Wide ResNet-50-2, and Inception v3, to generate the decision scores to be fused by the proposed ensemble model. The framework has been evaluated on two publicly available chest CT scan datasets achieving state-of-the-art performance, justifying the reliability of the model. The relevant source codes related to the present work is available in: GitHub.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/prevention & control , Lung/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Datasets as Topic , Early Diagnosis , Humans , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL